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Spin Motion and Resonances 
in Accelerators and Storage Rings 

 

E D Courant 

  

Abstract 

 

  

Some of the basic aspects of  the spin dynamics of accelerators and storage rings are reviewed. 
Since the components of spin parallel and perpendicular to the particle velocity behave different-
ly it is desirable to reformulate the equations of spin motion in a frame of reference that exhibits 
this difference explicitly. The conventional treatment employs a coordinate system derived from 
a reference orbit. An alternate coordinate system, based on the actual trajectory of the particle, 
leads to simplified equations of spin motion but, contrary to a conjecture presented in a previous 
note, resonance strengths calculated by the conventional and  the revised formalisms are identic-
al, as pointed out by Kondratenko. Resonances induced by radiofrequency dipoles or solenoids 
are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole 
but also the contribution from oscillations induced by it.  

 



(0.1)Equation Section (Next) 

1. Fundamentals 

Froissart and Stora’s [1] formulation of the Thomas-BMT equation [2] for the behavior of spin in 
static magnetic fields may be written  

 [ (d S q S B G B B
dt m

γ
γ

⊥= × + + &

JG
)]

JG JG JG JG
 (1.1) 

where  are the longitudinal and transverse 

parts of the magnetic field ,  being the unit vector in the direction of the particle velocity; 
( is the magnetic moment anomaly of the particle, q and m are its charge and mass, 

and γ  is the Lorentz energy factor. Similarly the longitudinal and transverse parts of the spin are J
.  
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 The Lorentz force equation gives 
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  (1.2) 

Combining   (1.1) and (1.2) we obtain  
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and 
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  The Thomas-BMT equation (1.1) is independent of the coordinate system. Since all 
the particles move in the vicinity of a closed orbit, it is convenient to use a coordinate system 
based on a closed reference orbit as we consider particles whose motion takes place near (though 
not exactly on) that orbit. We assume the reference orbit is in a plane and has a circumference we 
denote by 2πR. We introduce a coordinate system (a Frenet-Serret system) based on this refer-
ence orbit. The position of a particle is characterized by the vector ξ

G
 from the point on the refer-

ence orbit closest to the particle, and we define the coordinates to be: 

s = the distance along the reference orbit from an origin point (arbitrarily chosen) on the refer-
ence orbit to the point on the reference orbit closest to the particle. 

z = the vertical component of  ξ
G

, i.e. the distance from the plane of the reference orbit to the par-
ticle. 

x = the horizontal component of   ξ
G

, which is the length of the projection of  ξ
G

on the orbit plane.  
The basis vectors ˆ ˆ ˆ, ,x s ze e e  are unit vectors in the x, s and z directions. The sign convention is 
that if the reference orbit is counter-clockwise, x is positive in the plane outside the reference or-
bit and z is positive above the reference orbit.  

 We also define ( )sρ to be the radius of curvature of the reference orbit at s; in a straight 
section the curvature 1/ ( )sρ  is zero, and the coordinates are locally Cartesian. 

It is convenient to change to s instead of the time t as the independent variable, with  

 v
1 /

ds dt
x ρ

=
+

 (1.5) 

(note that s is the distance along the reference orbit,  not exactly the distance traversed by the 
particle). 

 In what follows we shall use the prime for differentiation by s; i.e. 

 ' dXX
ds

≡  

for any variable X. 

 We define a reference-orbit based frame with the unit vectors in the x, s, z directions as 
basis vectors. These basis vectors form a right-handed system. They rotate with s: 
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 (1.6)       

Equation Section (Next) 

2. Trajectory-based Frame 
 The particles do not necessarily travel on the reference orbit, therefore the spin compo-
nents in the directions ˆ ˆ ˆ, ,x s ze e e are not exactly in the directions transverse and longitudinal to the 
motion of a particle. Since the dynamical equations (1.3) and (1.4) show that the transverse and 
longitudinal spin components behave differently, it is desirable to formulate equations of motion 
that maintain this distinction, i.e. describe, for a given particle,  the behavior of the components 
of spin parallel and perpendicular to the direction of motion of that  particle, rather than the com-
ponents parallel and perpendicular to the reference orbit. 

Following  Kondratenko and Sivers [3] we introduce a “natural” or “local” reference frame based 
on the actual trajectory of the particle. The basis vector  is taken to be  the unit vector 2û

2ˆ ˆ ˆ ˆv ( ' ' ) / 1 ' 's x ze x e z e x z= + + + + 2

ˆ
ˆ
ˆ

u

u
−

 in the direction of the instantaneous particle velocity, and the 

other two are in the local radial and vertical direction orthogonal to  and to each other. In what 
follows we ignore second and higher terms in the excursions x and z of the particle from the ref-
erence orbit. The local frame is then based on the unit vectors 

v̂

 

                    

(2.1) 
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⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 The new basis vectors, of course, also rotate; using (1.6) and (2.1) we obtain, to first or-
der in x and z and their derivatives  



 

1

2

3

ˆ ˆ' 0 '' 0 1 ' 0 0 1/ 0
ˆ ˆ' '' 0 '' ' 1 ' 1/ 0 0
ˆ ˆ' 0 '' 0 0 ' 1 0 0 0

'/ 1/ '' 0 1 ' 0
1/ '' '/ '' ' 1 '

'/ '' 0 0 ' 1

x

s

z

u x x
u x z x z
u z z

x x x
x x z x z

z z z

ρ
ρ

ρ ρ
ρ ρ
ρ

⎡ − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜= + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎢ ⎥− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝⎣ ⎦
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜= − + − −⎜ ⎟⎜
⎜ ⎟⎜−⎝ ⎠⎝ ⎠

1

2

3

1

2

3

ˆ
ˆ
ˆ

ˆ0 1/ '' '/
ˆ1/ '' 0 ''
ˆ'/ '' 0

u
u
u

x z u
x z u

z z u

ρ ρ
ρ
ρ

⎛ ⎞
⎟⎜ ⎟
⎟⎜ ⎟
⎟⎜ ⎟
⎝ ⎠

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

e
e
e

⎞
⎟
⎟
⎟
⎠

 (2.2)  

 Note that the rotations of the basis vectors in the “natural” frame are more complicated 
than those in the reference-orbit based frame (1.6).   

Note that the independent variable s and the excursions x and z are still defined with respect to 
the reference orbit, while the basis vectors are derived from the actual trajectory.  

 With s as the independent variable equation (1.1) becomes 

 1 / 1 /' ;    [ (
v

)]d S x d S xS S F F B G
ds dt B

ρ ρ γ
ρ

⊥
+ +

≡ = = × = + + &

JG JGJG JG JG JG JG JG JG
B B  (2.3) 

where vmB
q
γρ =  is the magnetic rigidity of the particle, so that in terms of the basis vec-

tors we can write 1 2ˆ ˆ ˆ,   and u u u3

W 
1 11

2 2 2

3 3 3
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 (2.4) 

with  
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ρ ρ
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⎝ ⎠

JJG JG
3ˆ"  (2.5) 

 It is convenient to express this in terms of the excursions of the particle. Courant and 
Ruth [4] and Lee [5] express  in terms of the particle excursions, governed by the 
Lorentz force equation 

,  and  B B F⊥ &
JG JG JG

(1.2). In terms of the fixed vectors    ê
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where  Bsol  is the solenoidal field on the reference orbit, which was not included in [4] and [5].  

  In the trajectory-based coordinate system (2.1) this becomes 
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Note that  has no component in the direction , confirming the validity of the division into 
transverse and longitudinal components.  

B⊥

JG
2û

 We thus have (again to first order in the displacements x and z and their derivatives) 
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and expressing (2.4) in terms of the coordinates gives  
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 (2.9) 
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Note that if G=0, i.e. if there is no anomalous magnetic moment, the longitudinal spin compo-
ent S2 n   is constant: helicity is conserved.  

  The dominant terms in the equations for  and   are 1 'S 2 'S /Gγ ρ∓ , leading to the p
cession frequency (spin tune) Gߛ. 

re‐
 
Equation Section (Next)
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3. Spinor Formalism, Depolarizing Resonances  

 Spin dynamics is conveniently formulated with the use of spinor (SU2) algebra. We in-
troduce  a 2-component spinor  

 1

2

Ψ⎛ ⎞
Ψ = ⎜ ⎟Ψ⎝ ⎠

 (3.1) 

whose property is that the components of the spin S
JG

 are 

 †| |i iS iσ σ=< Ψ Ψ >= Ψ Ψ  (3.2) 

with  the Pauli matrices   1 2 3

0 1 0 1 0
,  ,  

1 0 0 0 1
i

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛
= = =⎜ ⎟ ⎜ ⎟ ⎜

⎞
⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

so that  the equation of motion (2.4) for the components Si  is equivalent to the spinor equation 

 

3 1 2' ( )
2 2 1 2 3

( '' 1 / )
*2 ( '' 1 / )

W W iWi iW
W iW W

G xi
G x

σ

γ ρ ζ

ς γ ρ
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⎜ ⎟Ψ = − ⋅ Ψ = − Ψ
⎜ ⎟+ −⎝

−⎛ ⎞
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JG JJG

⎠  (3.3) 

with W defined by(2.8), and 

 1 2 '' [ '/ (1 ) (1/ ) ' (1 ) / ]solW iW G z i Gz G z G B Bζ γ ρ ρ= − = − + + + − + ρ  (3.4)  

We now transform the spinor to 

 3exp
2
i σ χ⎛ ⎞Φ = −⎜

⎝ ⎠
Ψ⎟

γ θ Θ

 (3.5) 

with  

  (3.6) 
0

/ ;     '/ ';    ( );
s

s R ds x Gθ ρ χ= Θ = − = −∫

   

   
Θ is the turning angle; θ is the azimuth along the reference orbit. Then 
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3 3
3 3 1 1

2 21 1 1' " "
2

/
*2 /

i i

i

i G x e G x W W e
R

G R ei
ie G R

χσ χσ

χ

γσ γ σ σ σ
ρ ρ

γ ζ
χζ γ

−

−

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪Φ = − − + + − + + Φ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

⎛ ⎞
⎜ ⎟= − Φ
⎜ ⎟−⎝ ⎠

2 2

   (3.7)                         

The diagonal elements of the matrix in (3.7)  tell us that the basic precession frequency about the 
vertical (spin tune) is  Gγ , and the off-diagonal terms produce changes (depolarization) in the 

spin. The depolarizing term ie χζ − is a combination of oscillations at various  frequencies. 
Therefore it may be written in the form 

 
1

rii
r

r
e

R
e κ θχζ ε −− = ∑  (3.8) 

where resonances occur at the frequencies rκ  and rε  is the strength of the resonance at Gγ ൌ 
. Here , the r-th resonance value of Gγ, may be rκ rκ

 

 Imperfection resonances:  = an integer k, for imperfection resonances. rκ

 “Intrinsic” resonances (due to vertical betatron oscillations): rκ  = kP±νz, where  zν  is the 
vertical betatron tune, P is the periodicity of the magnet structure, k is any integer. 

 Broken periodicity resonances  r k zκ ν= ±  occur when the structure periodicity P is in-
exact. 

 RF resonances  induced by radiofrequency dipoles and/or solenoids 

placed somewhere on the orbit. These will be treated in section 5 of this report. 

/r rf okκ ω ω= ± rbit

xν

 In this report we omit discussions of: 

 Horizontal resonances   due to the fact that horizontal betatron oscillations 
produce turning angles per revolution that are not exactly 2π; 

r kκ = ±

 Horizontal orbit excursions; 

 Higher order resonances.  
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  When the orbit is the closed orbit produced by  imperfections, without betatron 
oscillations, (3.8) is a straightforward Fourier series and resonances occur when Gγ = an integer 

k; the resonance strengths kε  are calculated by Fourier analysis of ζ ie χ−  as defined in (3.4): 

  

 
2

0
( )1

2
R

k
i ke

π θ χε ζ
π

−= ∫ ds  (3.9) 

                    If betatron oscillations are present we have intrinsic and/or broken periodicity reson-
ances r zkκ ν= ± ; we consider z to be the trajectory of betatron oscillations of frequency ν z.. 
The frequencies ki  in (3.8) are not multiples of one frequency; therefore (3.8) is no longer a 
simple Fourier series but a more general combination of oscillations (an almost periodic 
function), and  Fourier analysis (3.9) does not apply.  Instead we note that for Gߛ = any re-
sonance frequency κ  the component of frequency κ of the trigonometric series  is 

 
2 2( 1)( ) ( )
2 2

1 1 lim
4 2

n R n Ri
n R n Rn

e ds e d
n

π πκθ χ κθ χ
κ π π
ε ζ ζ

π π
+−

−→∞

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫ i s−  (3.10) 

where the angular brackets denote the mean over all n. But since ( ) ( )z zi iz z e z eν θ νθ θ−
− += + θ , 

where *( ) and ( ) ( )z z zθ θ+ − += θ  are periodic functions, we can separate ζ  into ζ ζ+ −+    and 
perform Fourier analysis for each part, and find  

 

2 2( )
0 0

2 2( )
0 0

1 1for : 
2 2
1 1for : 

2 2

R Ri i
z

R Ri i
z

G k e ds e

G k e ds e

π πκθ χ γ
κ

π πκθ χ γ
κ

γ κ ν ε ζ ζ
π π

γ κ ν ε ζ ζ
π π

− Θ
− −

− Θ
+ +

= = + = =

= = − = =

∫ ∫

∫ ∫

G

G

ds

ds
 (3.11) 

To evaluate the resonance strengths in any particular case it is necessary to express the integra-
tion factors  , ,ζ ζ ζ+ −  in (3.9), (3.10), and (3.11) in terms of the components of the lattice 
structure, as is done in [4]. 

Equation Section (Next)   

4. Comparison with Reference­Orbit Frame 
 

In the “reference orbit”  frame used in most of the literature ([4], [5]. [6]) the equation for the 
components of , analogous to S

JG
(2.4) is 
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ˆ ˆ ''
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x xx
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JG JG JG

JG JG JG JG JG

JG JG JG
 (4.1) 

with   

 ˆ /zE F e ρ= +
JG JG

 (4.2) 

  

With expressed in terms of the reference frame (equations F
JG

(2.8)  and (2.6)) we have 

 1 ˆ ˆ" (1 ) '/ (1 )( / ) ' (1 ) (1 ) ''sol
z s x

BE G x e G z G z G e G z e
B

γ γ ρ ρ
ρ ρ

⎛ ⎞ ⎡ ⎤
= − + + − + + + − +⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦

JG
ˆγ  (4.3) 

Going through the same steps as in the previous section, we arrive at the spinor equation analog-
ous to (3.3): 

 

[ ]3 1 2 3

( )

( )*

( )

   ' ( ) exp
2

 
2

(1 ) '' (1 ) '/ (1 )( / ) ' (1 )

(1 ) '' ( 1) '/ (1 ) (1/ ) ' (1 )

x s

e

e

e sol
x s

sol

i

i

i G E E i
R

G ei R
Ge
R

BE iE G z i G z G z G
B

BG z i G z G z G
B

χ

χ

γ σ σ σ χσ

γ ζ

γζ

ζ γ γ ρ ρ

γ γ ρ ρ

−

⎧ ⎫Φ = − + + Φ⎨ ⎬
⎩ ⎭
⎛ ⎞
⎜ ⎟

= − Φ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

⎡ ⎤= − = − + − + − + + +⎢ ⎥⎣ ⎦
⎡ ⎤= − + − − − + + +⎢ ⎥⎣ ⎦

 (4.4)  

and  the resonance strength is  

 
2( 1)( ) ( ) ( )
2

1 
2

n Re e i
n R

e d
π κθ χ

κ π
ε ζ

π
+ −= ∫ s  (4.5) 

Note that the leading term  (1 ) ''G zγ− +  in ( )eζ is different from the leading term ''G zγ−  in ζ , 
which makes it plausible to surmise that resonance strengths in the two frames differ by the fac-
tor / (1 )G Gγ γ+ as indicated in [7]. But  this is not the case, as shown by Kondratenko [3]. His 
derivation, in our terminology, is: 

The difference between the resonance strength calculated in the two different frames is 



 ( )2( 1)( ) ( ) ( )
2

1 
2

n Re e
n R

e d
π κθ χ

κ κ π
ε ε ζ ζ

π
+ −− = −∫ i s

)

 (4.6) 

and  

 
( )

1 2(
'' '/

e
x sW E i W E

z iG z
ζ ζ

γ ρ
− = − − −

= +
 (4.7) 

 At the resonance  κ=Gγ, we have ( )G G Gκθ χ γθ γ θ γ− = − −Θ = Θ , and the integrand of (4.6) 
is 

 ( )( ) [ '' ' '] ( ' )e iG iG iGde z iG z e z e
ds

γ γζ ζ γ γΘ Θ− = + Θ = Θ  (4.8) 

That is a perfect derivative. The integral of a perfect derivative over a period averages to zero. 

Therefore : the resonance strength is independent of the frame in which it is calculated. ( )e
κ κε ε=

 It follows that in any particular case where the strengths of resonances are to be calcu-
lated one may select the trajectory- based formalism of section 3 or the reference-orbit formalism 
of section 4, whichever is more convenient. The algorithms given in [4] for calculation of reson-
ance strengths for a given magnet structure, leading to the computer program DEPOL,  remain 
valid. 

Equation Section (Next) 

5. Resonance Strength with RF Solenoids or Dipoles 

 RF solenoids or dipoles may be inserted in an accelerator or storage ring in order to deli-
berately excite spin resonances, either for the purpose of reversing (flipping) the spin, or to en-
hance intrinsic resonances to a strength where the spin reverses completely rather than partially. 

 The strength of these induced resonances may be calculated by using the results of the 
previous sections.  

5a. RF Solenoids 

 First; consider a radiofrequency solenoid with field Bsol  = 2 cosrms rfB tω .at one point in 

the ring, which we designate as θ=0. It rotates the spin by an angle 

 
2

cos ;  (1 ) rms
s rf s

B ds
t G

B
ω

ρ
Δ Δ = + ∫  (5.1) 
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once per revolution, and does not affect the orbit. Therefore we may set z = z’ = 0 in sections 3 
and 4, and (3.4) simplifies to 

 (1 ) / ( )cossol s p rfi G B B iζ ρ δ θ ν= − + = − Δ θ  (5.2) 

where ( )pδ θ  is the periodic delta function and /rf rf orbitν ω ω= is the rf frequency normalized to 

the revolution frequency. Since 1( )
2

ike
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p
k

θδ θ
π

∞

=−
= ∑

∞
and 1cos rf ( )

2
rf rfi ie eν θ ν θ−= +ν θ we can, as 

in Section 3, divide ζ into ζ ζ+ + −  and obtain 

 

2

0

2

0

21 (1for : 
2 4 4

21 (1for : 
2 4 4

R rmsi
rf s

R rmsi
rf s

)

)

B dsi i GG k e ds
R B

B dsi i GG k e ds
R B

π κθ
κ

π κθ
κ

γ κ ν ε ζ
π π π

γ κ ν ε ζ
π π π

−

+

+
= = + = = − Δ = −

+
= = − = = − Δ = −

∫∫

∫∫

ρ

ρ

γ

 (5.3) 

in agreement with [6]. 

 Thus there are two resonances of equal strength and equal phase in each interval of 
between one integer and the next . If Gκ = rfν is exactly a half integer these coalesce into a 

single resonance of twice the strength.  

 Note that, since sΔ  contains the factor 1 / Bρ these resonances become weak at high 
energy; therefore rf solenoids are primarily useful for low-energy rings such as IUCF. 

5b. RF Dipoles 

 An alternative is to use rf dipoles with transverse fields. We assume that we have a radio-
frequency dipole with radial horizontal field 2 cosrms rfB tω  at one point in the ring, which we 

designate as θ=0. The beam deflection it produces is 

 
2

cos ; rms
rf

B ds
t

B
ω

ρ
Δ Δ = ∫  (5.4) 

The spin rotation associated with this deflection is, according to eq. (1.1), just (1 )Gγ+ times the 
deflection(5.4), and this leads to the naïve equation 

 
2

(1 ) (1 )
4 4

rmsB ds
G G

B
ε γ γ

π π ρ
Δ

= + = + ∫  (5.5) 



for the resonance strength at rfG kγ ν= ±  [6,9]. But the dipole inevitably induces a forced vertic-

al oscillation in the whole ring, which in turn also affects the spin just like any other vertical os-
cillation, and this effect must also be considered, as recognized in the text of [9] and by other au-
thors [10]. 

The equation of orbit motion for the  forced oscillations is  

 
2

2 ( ) ( ) cosp
d z K s z

Rds rfδ θ νΔ
+ = θ  (5.6) 

where K(s) is the focusing gradient function, θ = s/R is the normalized azimuth,  δp(θ) is the pe-
riodic delta function, and /rf rf orbitν ω ω= . We assume the solution of the homogeneous equation 

corresponding to (5.6) is known; the vertical tune is zν  and the orbit functions are ( ),  ( )z zs sβ α . 
Transforming to simple harmonic formulation by going to the variables[8] 

 1;     ( )
( ) z zz

z s
s

η ϕ ds
ν ββ

= = ∫  (5.7) 

the inhomogeneous equation (5.6) becomes 

 
2 3/22

2
2 ( ) cosz z

z p
d

Rd
ν βη

rfν η δ θ
ϕ

Δ
+ = ν θ  (5.8) 

(Note that there are three different angles that increment by 2π every revolution: the normalized 
azimuth θ=s/R, Θ= the bending angle /ds ρ∫ on the reference orbit, and the betatron phase angle 

φ ; we chose  all three of these angles to be ൌ0 ሺmod 2πሻ at the azimuth of the rf dipole). 

Using the relations 

( )
2

;   ( )rms
p p

z z

B ds R
B

δ θ δ
ρ ν β

Δ = =∫ ϕ  

and again defining the resonant tune  νrf  as /rf rf orbitν ω ω=  we end up with 

 
2

2 1/2
2 ( ) cosz z z p rf

d
d
η ν η ν β δ ϕ ν ϕ
ϕ

+ = Δ  (5.9) 
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Since 1 1( ) ;    cos ( )
2 2

rf rfi iik
p rf

k
e e eν ϕ ν ϕϕδ ϕ ν ϕ

π

∞
−

=−∞
= =∑ + ,  (5.9) becomes   

 ( ) ( )1/ 22
2

2 4
rf rfi k i kz z

z
k

d e e
d

ν ϕ νν βη ν η
πϕ

∞ + −

=−∞

Δ ⎛+ = +⎜
⎝ ⎠

∑ ϕ ⎞
⎟  (5.10) 

the solution of which is 

 ( )

( )
( )

( )

1/2

1/2 1/2

2 22 2

( );

;
4 4

rf rf

z k k
k

i k i k
z z z z

k k
z rf z r

z

e e

k k

ν ϕ ν ϕ

η β η η

ν β ν βη η
π πν ν ν ν

∞
−

+ −
=−∞

+ −

+ −

= = +

Δ Δ
= =

− + − −

∑

f

 (5.11)  

The equations of spin dynamics expressed in terms of the trajectory excursion z(s), as described 
in sections 3 and 4, remain valid . To find the resonance strengths at rfG kγ ν= ±  we use the tra-

jectory-based frame of section3 (the alternate frame, section 4,  based on the reference orbit  

gives identical results). Recall 1/2
zz β η= , '' [ '/ (1G z i Gz ) (1 / ) ']G zζ γ ρ ρ= − + + + , and  the 

identities 

 

2 2

2 2 2 2

2 2

21 1;

12 ;   

z

z z z z z z

z z z z
z

z

d d d d
ds d ds d d

d d K
ds ds

α
2

d
ν β ϕ ν β ϕ ν β ϕ

β α β αα
β

= = +

− −
= − =

 (5.12) 

giving 

 

1/2 1/2 1/2

2 2 2

3/2 3/2 3/2 2 3/2 2

2
2

3/2 2 2

1 1 1'

( 1 )1 1''

1 1(1 )

z
z

zz z z z

z z z
z

z z z z z z

z
z z

d dz
d d

Kd dz
d d d

dK
d

α η ηη α η
ϕ ν ϕβ ν β β

α β α η α dη η ηα η
ν ϕ ϕβ β ν β ν β

ηβ η
β ν ϕ

⎛ ⎞
= − + = − −⎜ ⎟

⎝ ⎠

⎛ ⎞ − −
= − − − − +⎜ ⎟

⎝ ⎠

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦

ϕ

   (5.13) 

Using  the reference-orbit coordinate system of section 4 we have 
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[ ]( )

2
2

3/2 2 2 1/2

(1 ) '' ( 1) '/ (1 ) (1/ ) '

1 1 ( 1) 1( 1) (1 ) (1/

e

z z
zz z z

G z i G z G z

G d G dK i i
dd

ζ γ γ ρ ρ

γ η γ η ) 'G zβ η α η
ν ϕβ ν ϕ ρβ

= − + − − − +

⎡ ⎤ ⎛ ⎞+ −
= − − + − + +⎢ ⎥ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
ρ      (5.14) 

Each term of the trigonometric series (5.11) is an oscillation of frequency  or rf rfk kν ν− + , 

therefore we can again, as before , separate ( )eζ into ζ ζ+ −+ : 

 

2
( ) 2

3/2 2 2 1/2

2
2

2 2 2

2

1 1 ( 1) 1( 1) (1 ) (1/ ) '

( 1)( / )1 1 (
4

4

e
z z

zz z z

i
z z

z z
zk z z

i
z

z

G d G dK i i G z
dd

G ie G K i

e

κ ϕ

κ ϕ

γ η γ ηζ β η α η ρ
ν ϕβ ν ϕ ρβ

ν κ γ α κ νγ 1 ) (1/ ) 'z Gζ β β
π β ρν κ ν

νζ
π ν κ

+

−

∞
+ +

+
=−∞ +

−

⎡ ⎤ ⎛ ⎞+ −
= − − + − + +⎢ ⎥ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞Δ − ++

= − + + +⎢ ⎥⎜ ⎟⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

Δ
=

−

∑ ρ+

2
2

2 2
( 1)( / )1 1 (

 where ,

z z
z z

zk z

rf rf

G iG K i

k k

κ γ α κ νγ 1 ) (1/ ) 'Gβ β ρ
β ρν

κ ν κ ν

∞
− −

=−∞ +

+ −

⎡ ⎤⎛ ⎞ − ++
− + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= + = −

∑

(5.15)  

The resonance strengths are, analogously with (3.10) 

 

2 2

0 0

2 2

0 0

for : 

1
2 2

for :

1 
2 2

rf

R i iz
z

rf

R i iz
z

G n

e ds e d

G n

e ds e d

π πκϕ κϕ
κ

π πκϕ κϕ
κ

γ κ ν

νε ζ β ζ
π π
γ κ ν

ν

ϕ

ε ζ β ζ ϕ
π π

− −

+ +

= = +

= =

= = −

= =

∫ ∫

∫ ∫

 (5.16) 
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In the le case of u simp niform focusing, 2/ ; 0; 1; ; , (1 / ) ' 0z z z zR K Rβ ν α β ρ ϕ θ ρ= = = = = =  

 and (5.15) becomes 

 

2
2 2

2
2 2

(1 ) ( 1)
4

(1 ) ( 1)
4

i

k z
i

k z

e G G
R

e G G
R

κ ϕ

κ ϕ

ζ γ κ γ κ
π ν κ

ζ γ κ γ κ
π ν κ

+

−

∞

+ + +
=−∞ +
∞

− − −
=−∞ −

Δ ⎡ ⎤= + + −⎣ ⎦−

Δ ⎡ ⎤= + + −⎣ ⎦−

∑

∑
 (5.17) 

and for each k only a single term of the infinite series contributes to (5.16):  For 

rfG nκ γ ν= = +  (n any integer) this is the term ,  =  in rfk n n Gκ ν γ ζ− −= − − − = − , obtaining 



 

2
2 2

3 22
2 20

(1 )( ) ( 1)  
4 ( )

2 ( )
2 4 ( )

iG

z

rmsiG

z

e G G G G
R G

B dsR Ge d
B G

γϕ

κ

π γϕ
κ κ

G

ζ γ γ γ γ
π ν γ

γ γε ζ ϕ
π π ρ ν γ

−

−

−

Δ ⎡ ⎤= + − −⎣ ⎦−

+
= =

−
∫∫

 (5.18) 

and the same expression for rfG nκ γ ν= = − , in agreement with Kondratenko, Kondratenko and 

Filatov [11]. 
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